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S P E C I F I C A T I O N S

Size 12HP

Depth 25mm

Power Consumption +12V 80mA

−12V 75mA

Tuning Range 7Hz–50kHz

Tuning Accuracy ~7 octaves

Output Range ~+9dBu–~+12dBu,

−8V–+8V peak

Input Impedance 20kΩ (FM and HS),

100kΩ (others)

Output Impedance 150Ω

Output Drive 2kΩ (min), 20kΩ+ (ideal)

I N S T A L L A T I O N

Before installing the module, make sure the power is off. Attach the power
cable to the module and

to the bus. Double check the alignment of the red
stripe (or the brown wire for a multicolor cable)

with the markings on the
module and the bus. The red stripe should correspond with −12V, as is

standard in Eurorack. Check the documentation of your bus and power solution
if you are unsure.

Screw the module to the rails of the case using the
provided screws. (M2.5 and M3 size screws are

provided.)

New Systems Instruments modules all have keyed headers and properly
wired cables. But please

remember to double check the other side of the cable
 for proper installation with the bus. Addi-

tionally, if using a different power
cable, note that not every company wires modular power cables

such that the
red stripe will align properly with a keyed header. While our modules are
reverse po-

larity protected as much as is practical, it is still possible that
you could damage the module, your

power supply, or another module by
installing the power cable improperly.

Lastly, please fully screw down the module before powering on your case.
The electronics are po-

tentially sensitive to shorts, and if the module is not
properly attached to a case, there is a risk of

contact with conductive or
flammable matter.
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B A S I S

The Harmonic Shift Oscillator creates a sound from abstract parameters
describing the character-

istics of that sound. Specifically, given angular
frequency , harmonic level , and harmonic stride 

, this
produces two waveforms according to the following equations:

These are the real and imaginary components of the complex waveform:

E X P L A N A T I O N

All waveforms can be constructed by adding together a set of simpler
waveforms at various ampli-

tudes and frequencies. The relationship between
 frequency and amplitude for a given complex

waveform is known as that
waveform’s spectrum. Generally this spectrum is given in terms
of sine

waves, which our ear hears as pure tones.

When the spectrum only has nonzero amplitudes at frequencies that are
integer multiples of a fun-

damental frequency, that spectrum is said to be
harmonic. Otherwise, the spectrum is inharmonic.

The formulae above each have two parts: the part expressing the frequencies
of the components,

and the part expressing the amplitude of each of those
components. The Harmonic Shift Oscilla-

tor will produce sounds where the nth
harmonic is  times the fundamental frequency, .

When 
is an integer,  will also be an integer, and you’ll get a
harmonic spectra. Otherwise,

you’ll get an inharmonic spectra. The other
 part of these equations is the amplitude of each of

these waves: .
Spectra sound “brighter” or “darker” depending on how
much high frequency

content is present. Maximum brightness is achieved when
  is 1, and so every harmonic has the

same volume. The analog limitations
mean this is not quite possible in practice, but very bright

sounds are still
achievable. Lowering  to 0.5 would produce a spectrum with harmonics at
relative

amplitudes 1 for the first, 0.5 for the second, 0.25 and 0.125 for
the third and fourth, etc.

By controlling , you directly control how bright or dark the sound is.
By controlling , you con-

trol the character of the spectrum. And lastly,
 by controlling , you control the fundamental

frequency.
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HSO Spectrum at  and S = 1.3 L = 0.707
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I N T E R F A C E

1. Coarse Frequency – Control the
 frequency, ,

ranging from about 7Hz to 50kHz.

2. Fine Frequency – Control the frequency, , rang-

ing about
a fifth above or below the frequency deter-

mined by the Coarse knob.

3. Harmonic Level – Control , the brightness of the

spectrum,
ranging from 0 to 1.

4. Harmonic Stride – Control , the spacing be-

tween each
harmonic, ranging from 0 to about 4.

5. Frequency Modulation Attenuator – Attenuator

for #8, the
FM input.

6. Harmonic Stride Modulation Attenuator – Atten-

uator for #9, the
HS input.

7. Harmonic Level Modulation Attenuator – Attenu-

ator for #10, the
HL input.

8. Frequency Modulation – Modulate , the funda-

mental
 frequency. Typical range of ± 8 octaves, or

1.6 V/octave.

9. Harmonic Stride Modulation – Modulate , the spacing between
each harmonic. Typical range

of about ± 4.

10. Harmonic Level Modulation – Modulate , the brightness of the
spectrum. Typical range of ±

1.

11. V/Octave Input – Control , the fundamental frequency,
using a V/Octave scale.

12. \  Output – Outputs one phase of the waveform. This is
the cosine, real, or +90° component.

13. _ Output – Outputs the other phase of the waveform.
 This is the sine, imaginary, or 0°

component.
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U S I N G  T H E  H A R M O N I C  S H I F T  O S C I L L A T O R

The Harmonic Shift Oscillator offers a huge field of possible waveforms,
and the best way to get to

know it is to use your ears and walk through the
wavescape by turning the knobs. Unlike many

other methods of inharmonic
synthesis, the Harmonic Shift Oscillator is very intuitive, and won’t

require much
theoretical knowledge to get good outcomes.

HSO waveforms for various values of  and .

That being said, if all those possibilities are overwhelming, here are some
tips to get started.

First, turn the LEVEL knob somewhere between halfway and 4
o’clock; and plug one of the outputs

to your mixer, or however else you
get audio out of your modular. To get harmonic sounds, you

need to set 
to an integer.  is set to 1 when the STRIDE knob is about
halfway, or vertical. To set 

, slowly turn the STRIDE knob,
listening for the beat frequencies. When they slow down (they won’t

ever
completely stop), you’ll know you’ve reached your target.
 After that, they’ll start speeding up

again. The STRIDE knob
is very sensitive, so take your time! When you’ve reached 1, the output
will

sound like a rich, “normal” waveform. Then slowly increase
  to 2, which is found when the

STRIDE knob is just before 3
o’clock. It will sound hollow, or flimsy. Continue to set  to 4,
which is

found just before the end. It should sound really sparse, and almost
digital.

In addition to these, you can get a harmonic sound with  at 0.5 (at
about 9 o’clock), which will

sound like it’s an octave lower, and
at 3, which sounds a little strange and is more difficult to find

than 2 or
4.

Next, try experimenting with inharmonic frequencies, setting the
STRIDE knob somewhere in be-

tween the harmonic values. When you turn
the STRIDE knob a bunch, the harmonics will move but

the
fundamental frequency will not. Because of this difference in motion,
humans tend to pull these

two sounds apart and perceive them separately. To
perceptually stick them back together, move the

fundamental frequency,
especially with a V/Octave controller.

All the parameters of the Harmonic Shift Oscillator can be modulated.
Modulation of harmonic

stride can produce nice percussive tones, while
modulation of harmonic level adds dynamism. Fur-

ther, the outputs of the
Harmonic Shift Oscillator function well as inputs to its various modulation

capabilites. In this way, incredibly rich and varying soundscapes can be
 created from simple

controls.
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H A R M O N I C  A N D  I N H A R M O N I C  S P E C T R A ,  T U N I N G ,  A N D  B E A T
F R E Q U E N C I E S

Constructive and Destructive Interference

Any two waves interact with each other to create constructive and
destructive interference. That is,

when the crests of one wave line up with
 the crests of another wave, the overall waveform gets

louder. Alternately,
when the crests of one wave line up with the troughs of another wave, the
over-

all waveform gets quieter. The distance between the crests of two
different waves is the relative phase

of those waves. When two waves
of two different frequencies interact with each other, that relative

phase
changes at a constant rate, as the slower wave keeps falling further behind
 the faster one.

This continual change in phase produces a cyclic change in
amplitude, known as a beat frequency.

This frequency will always be
equal to half the difference between the frequencies of the two waves

being
considered. If we ignore the sign of this waveform, focusing just on the
change in amplitude

itself, this is just the difference in frequencies. We can
express it like this:

Beat Frequencies

sin(a) + sin(b) = 2 cos((a − b)/2) sin((a + b)/2)
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Note that these are two different ways of perceiving the same phenomenon,
not two different phe-

nomena. Sometimes we perceive things one way or the
other, but more often it’s a mixture of both.

Thus two very close
waveforms might be perceived as a single wave at the average frequency,


, with a slow beat frequency at  (twice the frequency of 
of the cosine modulator, since

we’re just hearing the absolute value of 
the amplitude). On the other hand, once these waves have

been sufficiently
separated, we’ll notice two dissonant frequencies as well as the beat
frequency.

When the two waves being considered are waves in a harmonic
series, we can rewrite the equation

like this:

Where  and  are two integers.

As we can see, both the beat frequency and average frequency of a harmonic
series are themselves

frequencies in a harmonic series of half the frequency.
 Thus, both ways of perceiving these two

waveforms give rise to waveforms
within the same basic harmonic series.

When the series is inharmonic, that is no longer the case. Beat frequencies
other than those present

within the spectrum can be perceived. But also, the
overall perceived frequency can be difficult for

the human ear to determine.
This difficulty is what enables some inharmonic sounds to be used

outside of a
harmonic context (for example, purely rhythmically). Other inharmonic
sounds—most

of those produced by the Harmonic Shift
Oscillator—will still be perceived as tonal, but the rela-

tionship of 
that tone to the fundamental frequency will be complicated. These sounds
should be

carefully tuned by ear.

P H A S E  A N D  T H E  T W O  O U T P U T S

The Harmonic Shift Oscillator includes two different outputs in orthogonal
phase with each other.

The phase of the \  output trails the
_ output by one quarter turn, or 90°. Thus, while these two

outputs have similar spectra, they have peaks and troughs which occur at
different times.

The perception of phase in humans is complex. While we do not seem to be
able to directly detect

absolute phase at all, phase differences between our
two ears play an active role in our perception

of the spatial characteristics
of a sound. Further, these phase differences have other effects on the

sound
that are directly audible. First, the different placement of peaks
and troughs cause these two

sounds to saturate differently at different times,
resulting in frequency content that varies with time,

but which is different
for each output. Second, the interaction of each of these outputs with anoth-

er
signal will produce beat frequencies which are out of phase with each other by
one eighth turn.

Lastly, because the phase of each individual component is
orthogonal, combining the two wave-

forms does not produce a comb filter effect,
but merely a new waveform at an intermediate phase.

However, the
differentiated application of the two waveforms to a multidimensional delay
environ-

ment, such as natural or artificial reverberation, results in a more
complex comb filter pattern than

would the application of either signal
alone.

While these two outputs are useful for spatialization, generally that is
not best achieved by simply

assigning one to each channel of a stereo output.
Further, there are other textural uses of this phase

difference beyond the
needs of spatialization.

(a +
b)/2 a − b

sin(nωt) + sin((n + J)ωt) = 2 cos(J(ω/2)t) sin((2n + J)(ω/2)t)

n J
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The Frequencies in a Two Dimensional

Resonator and Those
Producible by the

HSO

T H E  S P E C T R A  O F  N A T U R E

It is not the intention of the Harmonic Shift Oscillator to mimic any
natural sound. Nevertheless, it

has certain characteristics that align with
natural acoustic phenomena.

Were there no other factors, a single dimensional resonator would produce a
perfectly harmonic

waveform proportional to its length, mass, and elasticity.
But in nature, there are always other fac-

tors. Columns of air have endcaps and
bodies that have different elasticity, mass, and volume than

their contents.
 Strings have anchor points which themselves are pulled and prodded while the

string vibrates in space. As a result of this, many acoustic instruments
produce slightly inharmonic

sounds, where the space between harmonics is
 stretched or shrunk to just less than or just more

than 1, or just less than
or just more than 2.

Since it’s not really possible to dial in an exactly
integral harmonic stride, the Harmonic Shift Oscil-

lator generally ends up in
this barely inharmonic state. Further, just how inharmonic is readily tun-

able.
This makes the Harmonic Shift Oscillator sound “alive” in a way
that most oscillators don’t

(and to mimic this liveliness, other
oscillators must be doubled or tripled).

A two dimensional resonator—a drum
head, for exam-

ple—has vibratory modes proportional to the zeros of

Bessel functions of the first kind. Although these res-

onators can’t be
exactly modeled as a sum of frequencies

proportional to , we can
 get remarkably close.

Adjusting to place the fundamental frequency at 1, the

first 5 modes of a two dimensional resonator would be at:

1, 2.295, 3.598,
4.903, 6.209. Tuning  to exactly match

the first harmonic, we get the
 first five modes for the

Harmonic Shift Oscillator as 1, 2.295, 3.591, 4.886,

6.182, which is a difference of +0, +0, +4, +6, and +8

cents,
respectively.

As far as the brightness of natural spectra, generally this

brightness
changes as a function of changing resonance, as in speech, but also as a
function of over-

all energy of oscillation, as in a plucked or hammmered
string. While the first can be modeled with

a filter, the second is better modeled by modulation of , where an exponential envelope results in

greater rates of decay of the higher than the lower harmonics, while keeping
the overall exponen-

tial character of that decay for each harmonic.

T H E  H A R M O N I C  S H I F T  O S C I L L A T O R  A N D  C O N V E N T I O N A L  A N A L O G
S Y N T H E S I S

Conventional analog synthesis—“subtractive
 synthesis”—begins with four waveforms: sawtooth,

square, triangle, and sine. Leaving aside the sine
wave, we can express these waveforms according to

their spectra:

 

(sawtooth wave)

 

(square wave)
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Harmonic Levels of a Sawtooth wave and

an Approximation by the
Harmonic Shift

Oscillator

 

(triangle wave)

It is fairly straightforward to reproduce
 these spectra

with the Harmonic Shift Oscillator. First, we can see

that the
saw contains all harmonic frequencies, while the

triangle and square have only
odd frequencies. We can

produce this with the Harmonic Shift Oscillator by
set-

ting  to 1 or 2, respectively. The levels of these har-

monics can only
 be approximated, however. The first

five harmonics of a Sawtooth wave
 ( ) are 1,

0.5, 0.333, 0.25, 0.2. Matching the first and third
har-

monics ( ), the harmonic shift oscilla-

tor gives 1,
0.577, 0.333, 0.192, 0.111. Whichever har-

monic you choose to match, the
Harmonic Shift Oscilla-

tor has a slightly greater amplitude of prior harmonics,

and slightly lower amplitude of subsequent harmonics. This is similar for the
spectra of the triangle

wave, which has the first five harmonics
( ): 1, 0.111, 0.04, 0.020, 0.012. Again, match-

ing the third
harmonic ( ), we get 1, 0.2, 0.04, 0.008, 0.002.

Typical waveforms vs. phase-corrected HSO variants

While these spectra are different enough to give the Harmonic Shift
Oscillator a consistently dis-

tinct sound, in the practice of subtractive
synthesis these traditional waves are rarely used entirely

on their own.
 Instead, the sound source is shaped by mixing together different waveforms,
 and

then passing the result through a chain of filters. In some cases, by
using the Harmonic Shift Oscil-

lator one can forego this whole process and
arrive at the desired spectrum directly. But, filters offer

a substantially
different and interesting method of shaping sounds from that provided by the
Har-

monic Shift Oscillator. Fortunately we don’t have to choose. The
Harmonic Shift Oscillator is in-

tended to complement rather than replace
subtractive methods. It works well with filters and the

other tools of 
subtractive synthesis.
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