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S P E C I F I C A T I O N S

Size 12HP

Depth 25mm

Power Consumption +12V 80mA

−12V 75mA

Tuning Range 7Hz–50kHz

Tuning Accuracy ~7 octaves

Output Range ~+9dBu–~+12dBu,

−8V–+8V peak

Input Impedance 20kΩ (FM and HS),

100kΩ (others)

Output Impedance 150Ω

Output Drive 2kΩ (min), 20kΩ+ (ideal)

I N S T A L L A T I O N

Before installing the module, make sure the power is off. Attach the power cable to the module and

to the bus. Double check the alignment of the red stripe (or the brown wire for a multicolor cable)

with the markings on the module and the bus. The red stripe should correspond with −12V, as is

standard in Eurorack. Check the documentation of your bus and power solution if you are unsure.

Screw the module to the rails of the case using the provided screws. (M2.5 and M3 size screws are

provided.)

New Systems Instruments modules all have keyed headers and properly wired cables. But please

remember to double check the other side of the cable for proper installation with the bus. Addi-

tionally, if using a different power cable, note that not every company wires modular power cables

such that the red stripe will align properly with a keyed header. While our modules are reverse po-

larity protected as much as is practical, it is still possible that you could damage the module, your

power supply, or another module by installing the power cable improperly.

Lastly, please fully screw down the module before powering on your case. The electronics are po-

tentially sensitive to shorts, and if the module is not properly attached to a case, there is a risk of

contact with conductive or flammable matter.
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B A S I S

The Harmonic Shift Oscillator creates a sound from abstract parameters describing the character-

istics of that sound. Specifically, given angular frequency , harmonic level , and harmonic stride 

, this produces two waveforms according to the following equations:

These are the real and imaginary components of the complex waveform:

E X P L A N A T I O N

All waveforms can be constructed by adding together a set of simpler waveforms at various ampli-

tudes and frequencies. The relationship between frequency and amplitude for a given complex

waveform is known as that waveform’s spectrum. Generally this spectrum is given in terms of sine

waves, which our ear hears as pure tones.

When the spectrum only has nonzero amplitudes at frequencies that are integer multiples of a fun-

damental frequency, that spectrum is said to be harmonic. Otherwise, the spectrum is inharmonic.

The formulae above each have two parts: the part expressing the frequencies of the components,

and the part expressing the amplitude of each of those components. The Harmonic Shift Oscilla-

tor will produce sounds where the nth harmonic is  times the fundamental frequency, .

When  is an integer,  will also be an integer, and you’ll get a harmonic spectra. Otherwise,

you’ll get an inharmonic spectra. The other part of these equations is the amplitude of each of

these waves: . Spectra sound “brighter” or “darker” depending on how much high frequency

content is present. Maximum brightness is achieved when  is 1, and so every harmonic has the

same volume. The analog limitations mean this is not quite possible in practice, but very bright

sounds are still achievable. Lowering  to 0.5 would produce a spectrum with harmonics at relative

amplitudes 1 for the first, 0.5 for the second, 0.25 and 0.125 for the third and fourth, etc.

By controlling , you directly control how bright or dark the sound is. By controlling , you con-

trol the character of the spectrum. And lastly, by controlling , you control the fundamental

frequency.
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HSO Spectrum at  and S = 1.3 L = 0.707
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NEW SYSTEMS INSTRUMENTS

I N T E R F A C E

1. Coarse Frequency – Control the frequency, ,

ranging from about 7Hz to 50kHz.

2. Fine Frequency – Control the frequency, , rang-

ing about a fifth above or below the frequency deter-

mined by the Coarse knob.

3. Harmonic Level – Control , the brightness of the

spectrum, ranging from 0 to 1.

4. Harmonic Stride – Control , the spacing be-

tween each harmonic, ranging from 0 to about 4.

5. Frequency Modulation Attenuator – Attenuator

for #8, the FM input.

6. Harmonic Stride Modulation Atten uator – Atten-

uator for #9, the HS input.

7. Harmonic Level Modulation Attenuator – Attenu-

ator for #10, the HL input.

8. Frequency Modulation – Modulate , the funda-

mental frequency. Typical range of ± 8 octaves, or

1.6 V/octave.

9. Harmonic Stride Modulation – Modulate , the spacing between each harmonic. Typical range

of about ± 4.

10. Harmonic Level Modulation – Modulate , the brightness of the spectrum. Typical range of ±

1.

11. V/Octave Input – Control , the fundamental frequency, using a V/Octave scale.

12. \  Output – Outputs one phase of the waveform. This is the cosine, real, or +90° component.

13. _ Output – Outputs the other phase of the waveform. This is the sine, imaginary, or 0°

component.
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U S I N G  T H E  H A R M O N I C  S H I F T  O S C I L L A T O R

The Harmonic Shift Oscillator offers a huge field of possible waveforms, and the best way to get to

know it is to use your ears and walk through the wavescape by turning the knobs. Unlike many

other methods of inharmonic synthesis, the Harmonic Shift Oscillator is very intuitive, and won’t

require much theoretical knowledge to get good outcomes.

HSO waveforms for various values of  and .

That being said, if all those possibilities are overwhelming, here are some tips to get started.

First, turn the LEVEL knob somewhere between halfway and 4 o’clock; and plug one of the outputs

to your mixer, or however else you get audio out of your modular. To get harmonic sounds, you

need to set  to an integer.  is set to 1 when the STRIDE knob is about halfway, or vertical. To set 

, slowly turn the STRIDE knob, listening for the beat frequencies. When they slow down (they won’t

ever completely stop), you’ll know you’ve reached your target. After that, they’ll start speeding up

again. The STRIDE knob is very sensitive, so take your time! When you’ve reached 1, the output will

sound like a rich, “normal” waveform. Then slowly increase  to 2, which is found when the

STRIDE knob is just before 3 o’clock. It will sound hollow, or flimsy. Continue to set  to 4, which is

found just before the end. It should sound really sparse, and almost digital.

In addition to these, you can get a harmonic sound with  at 0.5 (at about 9 o’clock), which will

sound like it’s an octave lower, and at 3, which sounds a little strange and is more difficult to find

than 2 or 4.

Next, try experimenting with inharmonic frequencies, setting the STRIDE knob somewhere in be-

tween the harmonic values. When you turn the STRIDE knob a bunch, the harmonics will move but

the fundamental frequency will not. Because of this difference in motion, humans tend to pull these

two sounds apart and perceive them separately. To perceptually stick them back together, move the

fundamental frequency, especially with a V/Octave controller.

All the parameters of the Harmonic Shift Oscillator can be modulated. Modulation of harmonic

stride can produce nice percussive tones, while modulation of harmonic level adds dynamism. Fur-

ther, the outputs of the Harmonic Shift Oscillator function well as inputs to its various modulation

capabilites. In this way, incredibly rich and varying soundscapes can be created from simple

controls.
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H A R M O N I C  A N D  I N H A R M O N I C  S P E C T R A ,  T U N I N G ,  A N D  B E A T
F R E Q U E N C I E S

Constructive and Destructive Interference

Any two waves interact with each other to create constructive and destructive interference. That is,

when the crests of one wave line up with the crests of another wave, the overall waveform gets

louder. Alternately, when the crests of one wave line up with the troughs of another wave, the over-

all waveform gets quieter. The distance between the crests of two different waves is the relative phase

of those waves. When two waves of two different frequencies interact with each other, that relative

phase changes at a constant rate, as the slower wave keeps falling further behind the faster one.

This continual change in phase produces a cyclic change in amplitude, known as a beat frequency.

This frequency will always be equal to half the difference between the frequencies of the two waves

being considered. If we ignore the sign of this waveform, focusing just on the change in amplitude

itself, this is just the difference in frequencies. We can express it like this:

Beat Frequencies

sin(a) + sin(b) = 2 cos((a − b)/2) sin((a + b)/2)
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Note that these are two different ways of perceiving the same phenomenon, not two different phe-

nomena. Sometimes we perceive things one way or the other, but more often it’s a mixture of both.

Thus two very close waveforms might be perceived as a single wave at the average frequency, 

, with a slow beat frequency at  (twice the frequency of  of the cosine modulator, since

we’re just hearing the absolute value of  the amplitude). On the other hand, once these waves have

been sufficiently separated, we’ll notice two dissonant frequencies as well as the beat frequency.

When the two waves being considered are waves in a harmonic series, we can rewrite the equation

like this:

Where  and  are two integers.

As we can see, both the beat frequency and average frequency of a harmonic series are themselves

frequencies in a harmonic series of half the frequency. Thus, both ways of perceiving these two

waveforms give rise to waveforms within the same basic harmonic series.

When the series is inharmonic, that is no longer the case. Beat frequencies other than those present

within the spectrum can be perceived. But also, the overall perceived frequency can be difficult for

the human ear to determine. This difficulty is what enables some inharmonic sounds to be used

outside of a harmonic context (for example, purely rhythmically). Other inharmonic sounds—most

of those produced by the Harmonic Shift Oscillator—will still be perceived as tonal, but the rela-

tionship of  that tone to the fundamental frequency will be complicated. These sounds should be

carefully tuned by ear.

P H A S E  A N D  T H E  T W O  O U T P U T S

The Harmonic Shift Oscillator includes two different outputs in orthogonal phase with each other.

The phase of the \  output trails the _ output by one quarter turn, or 90°. Thus, while these two

outputs have similar spectra, they have peaks and troughs which occur at different times.

The perception of phase in humans is complex. While we do not seem to be able to directly detect

absolute phase at all, phase differences between our two ears play an active role in our perception

of the spatial characteristics of a sound. Further, these phase differences have other effects on the

sound that are directly audible. First, the different placement of peaks and troughs cause these two

sounds to saturate differently at different times, resulting in frequency content that varies with time,

but which is different for each output. Second, the interaction of each of these outputs with anoth-

er signal will produce beat frequencies which are out of phase with each other by one eighth turn.

Lastly, because the phase of each individual component is orthogonal, combining the two wave-

forms does not produce a comb filter effect, but merely a new waveform at an intermediate phase.

However, the differentiated application of the two waveforms to a multidimensional delay environ-

ment, such as natural or artificial reverberation, results in a more complex comb filter pattern than

would the application of either signal alone.

While these two outputs are useful for spatialization, generally that is not best achieved by simply

assigning one to each channel of a stereo output. Further, there are other textural uses of this phase

difference beyond the needs of spatialization.

(a +
b)/2 a − b

sin(nωt) + sin((n + J)ωt) = 2 cos(J(ω/2)t) sin((2n + J)(ω/2)t)

n J
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The Frequencies in a Two Dimensional

Resonator and Those Producible by the

HSO

T H E  S P E C T R A  O F  N A T U R E

It is not the intention of the Harmonic Shift Oscillator to mimic any natural sound. Nevertheless, it

has certain characteristics that align with natural acoustic phenomena.

Were there no other factors, a single dimensional resonator would produce a perfectly harmonic

waveform proportional to its length, mass, and elasticity. But in nature, there are always other fac-

tors. Columns of air have endcaps and bodies that have different elasticity, mass, and volume than

their contents. Strings have anchor points which themselves are pulled and prodded while the

string vibrates in space. As a result of this, many acoustic instruments produce slightly inharmonic

sounds, where the space between harmonics is stretched or shrunk to just less than or just more

than 1, or just less than or just more than 2.

Since it’s not really possible to dial in an exactly integral harmonic stride, the Harmonic Shift Oscil-

lator generally ends up in this barely inharmonic state. Further, just how inharmonic is readily tun-

able. This makes the Harmonic Shift Oscillator sound “alive” in a way that most oscillators don’t

(and to mimic this liveliness, other oscillators must be doubled or tripled).

A two dimensional resonator—a drum head, for exam-

ple—has vibratory modes proportional to the zeros of

Bessel functions of the first kind. Although these res-

onators can’t be exactly modeled as a sum of frequencies

proportional to , we can get remarkably close.

Adjusting to place the fundamental frequency at 1, the

first 5 modes of a two dimensional resonator would be at:

1, 2.295, 3.598, 4.903, 6.209. Tuning  to exactly match

the first harmonic, we get the first five modes for the

Harmonic Shift Oscillator as 1, 2.295, 3.591, 4.886,

6.182, which is a difference of +0, +0, +4, +6, and +8

cents, respectively.

As far as the brightness of natural spectra, generally this

brightness changes as a function of changing resonance, as in speech, but also as a function of over-

all energy of oscillation, as in a plucked or hammmered string. While the first can be modeled with

a filter, the second is better modeled by modulation of , where an exponential envelope results in

greater rates of decay of the higher than the lower harmonics, while keeping the overall exponen-

tial character of that decay for each harmonic.

T H E  H A R M O N I C  S H I F T  O S C I L L A T O R  A N D  C O N V E N T I O N A L  A N A L O G
S Y N T H E S I S

Conventional analog synthesis—“subtractive synthesis”—begins with four waveforms: sawtooth,

square, triangle, and sine. Leaving aside the sine wave, we can express these waveforms according to

their spectra:
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(square wave)
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Harmonic Levels of a Sawtooth wave and

an Approximation by the Harmonic Shift

Oscillator

 

(triangle wave)

It is fairly straightforward to reproduce these spectra

with the Harmonic Shift Oscillator. First, we can see

that the saw contains all harmonic frequencies, while the

triangle and square have only odd frequencies. We can

produce this with the Harmonic Shift Oscillator by set-

ting  to 1 or 2, respectively. The levels of these har-

monics can only be approximated, however. The first

five harmonics of a Sawtooth wave ( ) are 1,

0.5, 0.333, 0.25, 0.2. Matching the first and third har-

monics ( ), the harmonic shift oscilla-

tor gives 1, 0.577, 0.333, 0.192, 0.111. Whichever har-

monic you choose to match, the Harmonic Shift Oscilla-

tor has a slightly greater amplitude of prior harmonics,

and slightly lower amplitude of subsequent harmonics. This is similar for the spectra of the triangle

wave, which has the first five harmonics ( ): 1, 0.111, 0.04, 0.020, 0.012. Again, match-

ing the third harmonic ( ), we get 1, 0.2, 0.04, 0.008, 0.002.

Typical waveforms vs. phase-corrected HSO variants

While these spectra are different enough to give the Harmonic Shift Oscillator a consistently dis-

tinct sound, in the practice of subtractive synthesis these traditional waves are rarely used entirely

on their own. Instead, the sound source is shaped by mixing together different waveforms, and

then passing the result through a chain of filters. In some cases, by using the Harmonic Shift Oscil-

lator one can forego this whole process and arrive at the desired spectrum directly. But, filters offer

a substantially different and interesting method of shaping sounds from that provided by the Har-

monic Shift Oscillator. Fortunately we don’t have to choose. The Harmonic Shift Oscillator is in-

tended to complement rather than replace subtractive methods. It works well with filters and the

other tools of  subtractive synthesis.
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